

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S2 (6684)

June 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	Continuous uniform distribution or rectangular distribution.	B1
	$ \begin{array}{c c} f(x) \\ \hline \frac{1}{5} \\ \hline 0 \text{ may be implied by start at y axis} \\ \hline 0 \\ \hline \end{array} $	B1
		(3)
(b)	E(X) = 2.5 ft from their a and b, must be a number	B1ft
	$Var(X) = \frac{1}{12}(5-0)^2$ or attempt to use $\int_0^5 f(x)x^2 dx - \mu^2$ use their $f(x)$	M1
	$=\frac{25}{12}$ or 2.08 o.e awrt 2.08	A1
		(3)
(c)	$P(X > 3) = \frac{2}{5} = 0.4$ 2 times their 1/5 from diagram	B1ft (1)
(d)	P(X=3)=0	B1 (1)
		(Total 8)

Question		Scheme		Marks
Number 2			2	B1 B1 M1 M1 M1
	is polluting the river with bator The scientists claim is justified Method 2 $H_0: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda > 5 \ (\lambda > 2.5)$ $X \sim \text{Po } (2.5)$ $P(X < 7)$ $= 0.9858$ $0.9858 > 0.95$	may us $[P(X < 5) = 0.8912] \text{att } P(X < 7)$ $P(X < 6) = 0.9580$ CR $X \ge 6 \text{wrt } 0.986$ $7 \ge 6 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant}$ cant evidence at the 5% significance level that the cteria.	se λ or μ be implied $P(X < 6)$	(7) Total 7

$ \frac{\text{Two tail test}}{\text{Method 1}} \\ H_o: \lambda = 5 \ (\lambda = 2.5) \\ H_1: \lambda \neq 5 \ (\lambda \neq 2.5) \\ \hline \\ P(X \geq 7) = 1 - P(X \leq 6) \\ = 1 - 0.9858 \\ = 0.0142 \\ \hline \\ CR \ X \geq 7 \\ \hline \\ CR \ X \geq 7 \\ \hline \\ CR \ Z \geq 7 $				
(Reject H_0 .) There is significant evidence at the 5% significance level that the factory is polluting the river with bacteria. OT The scientists claim is justified $ \frac{\text{Method 2}}{H_0: \lambda = 5 \ (\lambda = 2.5)} \qquad \text{may use } \lambda \text{ or } \mu $ B1 B0 $X \sim \text{Po } (2.5)$ P(X < 7)	Method 1 $H_0: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$ $X \sim \text{Po } (2.5)$ $P(X \geq 7) = 1 - P(X \leq 6)$ $= 1 - 0.9858$ $= 0.0142$	$P(X \ge 7) = 1 - 0.9858 = 0.0142$ $CR \ X \ge 7$	att $P(X \ge 7)$ $P(X \ge 7)$ awrt 0.0142	B0M1M1A1M1
$H_0: \lambda = 5 \ (\lambda = 2.5) \qquad \text{may use } \lambda \text{ or } \mu$ $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$ $X \sim \text{Po } (2.5)$ $P(X < 7) \qquad \begin{bmatrix} P(X < 6) = 0.9580 \\ P(X < 7) = 0.9858 \end{bmatrix} \qquad \text{att } P(X < 7)$ $P(X < 7) \qquad P(X < 7) \qquad P(X < 7)$ $P(X < 7) = 0.9858$ $CR \ X \geq 7 \qquad \text{awrt } 0.986$ $0.9858 > 0.975 \qquad 7 \geq 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant}$ $Reject \ H_0. \text{) There is significant evidence at the } 5\% \text{ significance level that the factory}$	is polluting the river with ba or	cteria.	level that the factory	B1
$= 0.9858$ $= 0.9858$ $= 0.9858 > 0.975$ $7 \ge 7 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant}$ $(\text{Reject H}_0.) \text{ There is significant evidence at the } 5\% \text{ significance level that the factory}$	$\overline{H_o: \lambda = 5} \ (\lambda = 2.5)$ $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$		may use λ or μ	В0
(Reject H ₀ .) There is significant evidence at the 5% significance level that the factory	= 0.9858	$P(X < 7) = 0.9858$ $CR X \ge 7$	awrt 0.986	M1A1
or The scientists claim is justified	(Reject H ₀ .) There is significe is polluting the river with base or	cant evidence at the 5% significance lacteria.	_	B1

Question Number	Scheme			Marks
3(a)	$X \sim \text{Po} (1.5)$	need Po and 1.5	B1	(1)
(b)	Faulty components occur at a constant rate. Faulty components occur independently or randomly. Faulty components occur singly.	any two of the 3 only need faulty once	B1 B1	(2)
(c)	$P(X = 2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$		M1	
	=0.8088-0.5578			
	= 0.251	awrt 0.251	A1	
(-1)	<i>X</i> ∼ Po(4.5)	4.5 may be implied	D4	(2)
(d)		4.5 may be implied	B1 M1	
	$P(X \ge 1) = 1 - P(X = 0)$ = 1 - e ^{-4.5} = 1 - 0.0111			
	= 0.9889	awrt 0.989	A1	(3)
				Total 8

Question Number	Scheme		Marks
4	Attempt to write down combinations	at least one seen	M1 A1
	(5,5,5), $(5,5,10)$ any order $(10,10,5)$ any order, $(10,10,10)$		
	(5,10,5), (10,5,5), (10,5,10), (5,10,10),	all 8 cases considered. May be implied by (10,5,10) and 3 * (5,5,10)	A1
	median 5 and 10		B1
	Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$	add at least two prob	M1 A1
	(4) (4) (4) 04	using ½ and ¾. identified by having same median of 5 or 10 Allow no 3 for M	
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$		A1 (7)
			Total 7

Question Number	\$	Scheme		Marks
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50$ p is small, $p < 0.2$ then X can be approximated by $Po(np)$		B1 B1	(2)
(b)	P(2 consecutive calls) = 0.01 ² = 0.0001		M1 A1	(2)
(c)	$X \sim B(5, 0.01)$	may be implied	B1	
	P(X>1) = 1 - P(X=1) - P(X=0) = 1 - 5(0.01)(0.99) ⁴ - (0.99) ⁵ = 1 - 0.0480298 0.95099		M1	
	= 0.00098	awrt 0.00098	A1	(3)
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1-p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3)
(e)	$X \sim \text{Po}(10)$			
	$P(X > 6) = 1 - P(X \le 6)$ = 1 - 0.1301 = 0.8699	awrt 0.870	M1 A1	
				(2)
				Total 12

Question Number		Scheme		Marks	3
6	$\label{eq:continuous_problem} \begin{split} & \underline{One\ tail\ test} \\ & \underline{Method\ 1} \\ & H_o: p = 0.2 \\ & H_1: p > 0.2 \end{split}$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	M1	
	$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att $P(X \ge 3)$ $P(X \ge 4)$	M1	
	= 0.0579	$CR X \ge 4$	awrt 0.0579	A1	
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
_		insufficient evidence at the 5% signifulation of times the taxi/driver is late. fied	icance level that	B1 (Tota	(7) 1 7
	$\frac{\text{Method 2}}{H_o: p = 0.2}$ $H_1: p > 0.2$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	M1	
	P(X < 3) =	[P(X < 3) = 0.9421] $P(X < 4) = 0.9933$	att $P(X < 3)$ $P(X < 4)$		
	0.9421	$\operatorname{CR} X \geq 4$	awrt 0.942	M1A1	
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
		insufficient evidence at the 5% signiful mber of times the taxi/driver is late. fied	icance level that	B1	(7)

-			1
Two tail test			D1
Method 1			B1 B0
$H_0: p = 0.2$			ъ
$H_1: p \neq 0.2$			M1
$X \sim X \sim B(5, 0.2)$	may be	implied	
D(W. 0) 1 D(W. 0)	L (T)(X)	1	M1
$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421		$(X \ge 3) \mid P(X \ge 4)$	
= 1 - 0.9421	$P(X \ge 4) = 1 - 0.9933 = 0.0067$		A1
= 0.0579	$CR X \ge 4$ awrt 0	0579	
0.0277		.0575	M1
0.0579 > 0.025	$3 \le 4$ or 3 is not in critical region or 3 is no	ot significant	
	l		B1
	insufficient evidence at the 5% significance	e level that	
	imber of times the taxi/driver is late.		
Or Linda's claim is not just:	meu		
			B1
Method 2			B0
$H_0: p = 0.2$			
$H_1: p \neq 0.2$			M1
$X \sim X \sim B(5, 0.2)$	may be	implied	
P(X < 3) =		(X < 3) P(X < 4)	
	P(X < 4) = 0.9933		
0.9421	$\operatorname{CR} X \ge 4$ awrt	0.942	M1A1
0.9121	CRA _ I	0.542	
0.9421 < 0.975	$3 \le 4$ or 3 is not in critical region or 3 is n	ot significant	M1
.		• .•	B1
<u>.</u>	sufficient evidence at the 5% significance l	evel that	Di
Or Linda's claim is not just	imber of times the taxi/driver is late.		
or Emon 5 claim is not just			
Special Case			
Special Case	1		
If they use a probability of	$\frac{1}{7}$ throughout the question they may gain E	B1 B1 M0 M1	
A0 M1 B1.			
NB they must attempt to we	ork out the probabilities using $\frac{1}{7}$		
may mast attempt to we	7		

Question Number	Scheme	Marks	
7(a) i	If $X \sim B(n,p)$ and n is large or $n > 10$ or $np > 5$ or $nq > 5$ p is close to 0.5 or $nq > 5$ and $np > 5$ then X can be approximated by $N(np,np(1-p))$	B1 B1	2)
ii	mean = np	B1	2)
	variance = $np(1-p)$ must be in terms of p	B1	
		(2	2)
(b)	$X \sim N (60, 58.2)$ or $X \sim N (60, 7.63^2)$ 60, 58.2	B1, B1	
	$P(X \ge 40) = P(X > 39.5)$ using 39.5 or 40.5	M1	
	$=1-P\left(z<\pm\left(\frac{39.5-60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their μ and σ $=1-P(\ z<-2.68715\ldots)$	M1	
	$= 0.9965 \qquad \qquad \text{allow answers in range } 0.996 - 0.997$	A1dep on both M	
		(:	5)
(c)	E(X) = 60 may be implied or ft from part (b)	B1ft	
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 A1	3)
		Total 1	

Question Number	Scheme		Marks
8(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(b)	Mode is $x = 3$	B1	(3)
(c)	$F(x) = \int_0^x \frac{1}{6}t dt (\text{for } 0 \le x \le 3)$ ignore limits for $= \frac{1}{12}x^2$ must use limit $F(x) = \int_3^x 2 - \frac{1}{2}t dt; + \int_0^3 \frac{1}{6}t dt (\text{for } 3 < x \le 4)$ need limit of 3 and variable up limit; need limit 0 and $= 2x - \frac{1}{4}x^2 - 3$	of 0 A1	; M1
(d)	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{12}x^2 & 0 \le x \le 3 \\ 2x - \frac{1}{4}x^2 - 3 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$ middle pair ends	M1	(7)
	$\frac{1}{12}x^2 = 0.5$ eq for their $0 \le x \le 3$ $x = \sqrt{6} = 2.45$ $\sqrt{6}$ or awrt 2.4.		(3) Total 14